Interpreting muscle function from EMG: lessons learned from direct measurements of muscle force.
نویسندگان
چکیده
Electromyography is often used to infer the pattern of production of force by skeletal muscles. The interpretation of muscle function from the electromyogram (EMG) is challenged by the fact that factors such as type of muscle fiber, muscle length, and muscle velocity can all influence the relationship between electrical and mechanical activity of a muscle. Simultaneous measurements of EMG, muscle force, and fascicle length in hindlimb muscles of wild turkeys allow us to probe the quantitative link between force and EMG. We examined two features of the force-EMG relationship. First, we measured the relaxation electromechanical delay (r-EMD) as the time from the end of the EMG signal to time of the end of force. This delay varied with locomotor speed in the lateral gastrocnemius (LG); it was longer at slow walking speeds than for running. This variation in r-EMD was not explained by differences in muscle length trajectory, as the magnitude of r-EMD was not correlated with the velocity of shortening of the muscle during relaxation. We speculate that the longer relaxation times at slow walking speeds compared with running may reflect the longer time course of relaxation in slower muscles fibers. We also examined the relationship between magnitude of force and EMG across a range of walking and running speeds. We analyzed the force-EMG relationship during the swing phase separately from the force-EMG relationship during stance phase. During stance, force amplitude (average force) was linearly related to mean EMG amplitude (average EMG). Forces during swing phase were lower than predicted from the stance phase force-EMG relationship. The different force-EMG relationships during the stance and swing phases may reflect the contribution of passive structures to the development of force, or a nonlinear force-EMG relationship at low levels of muscle activity. Together the results suggest that any inference of force from EMG must be done cautiously when a broad range of activities is considered.
منابع مشابه
معرفی روش استفاده از سیگنال مکانومیوگرام در ارزیابی عملکرد عضلات
Background and aims Recordings of electrical activity in the muscle and surface electromyography (EMG) have been widely used in the field of applied physiology. In parallel to recording of the EMG, the detectable low-frequency vibration signal generated by the skeletal muscle has been known and well documented. As the nature of the signal has been progressively revealed, the term of mec...
متن کاملEMG-based Fatigue Assessment During Endurance Testing With Different VT Protocols
BACKGROUND: Muscle fatigue can be defined as the failure of a muscle to maintain a reasonably expected force output. The multivariate approach to fatigue assessment is used because the multiple (EMG) feature provides more information than anyone. OBJECTIVE: This study presents a method of assessing muscle fatigue during endurance testing at 50% maximal voluntary contraction (MVC) using electro...
متن کاملQuantitative Assessment of Muscle Fatigue for FES Research Studies
Background: Muscle fatigue is an important issue in neuromuscular rehabilitation. Better control of this phenomenon would result in better prevention of its consequent physiological damages.Objective: To provide a mathematical representation of muscle fatigue as a function of time.Methods: We conducted this study by combining the EMG-based estimation methods of muscle activation with the availa...
متن کاملPredicting maximum eccentric strength from surface EMG measurements.
The origin of the well-documented discrepancy between maximum voluntary and in vitro tetanic eccentric strength has yet to be fully understood. This study aimed to determine whether surface EMG measurements can be used to reproduce the in vitro tetanic force-velocity relationship from maximum voluntary contractions. Five subjects performed maximal knee extensions over a range of eccentric and c...
متن کاملEffects of Concentric and Eccentric Strength Training on Electromyography Activity of the Knee Agonist –Antagonist Muscle
Purpose: An appropriate activity of the knee agonist -antagonist muscles is important to resist against abnormal abduction-adduction moments loads around knee joint and reduce the risk of knee injuries. Exercise training has been commonly used as an intervention to improve neuromuscular activity within the synergic and/or agonist-antagonist muscles. However, maximizing the effectiveness of exer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative and comparative biology
دوره 48 2 شماره
صفحات -
تاریخ انتشار 2008